Conclusion
Digital Anatomy 3D printed materials have great potential in fabricating patient-specific myocardium with accurate mechanical properties associated with gender, age, ethnicity, and other physiological and pathological characteristics. The results of this study suggest that the fabrication of patient specific tissue-mimicking heart models with both geometrical and mechanical accuracy is possible with the Stratasys J750 Digital Anatomy printer, software and material. Specifically, the Digital Anatomy material shows promise in its ability to replicate porcine tissue compliance consistently with minimal variation. This is a major advantage given the wide variability of porcine compliance in samples tested from the same area of the heart.
When developing new devices and understanding their functionality, repeatability between samples
and times of testing is very important to minimise confounding variables. The Digital Anatomy
printed myocardium shows high repeatability in stiffness value within the same sample tested multiple times, as well as between samples. This presents a significant advantage to medical device manufacturers seeking bench testing models to produce reliable and consistent results with minimal variability. It therefore lends itself to applications in product development where repeatability and reliability are of paramount importance.